
Safety properties - statement

Messages are delivered in order
The safety condition must hold for every possible sequence of inputs, so we may assume
that the data in each message is distinct from the data in each other message. Or, the
writing application can supply sequence numbers, which we require to be in order,
To prove:

For each pair of messages sent in each execution, if write(x) appears in an
execution before write(y) then read(x) appears in the execution before read(y).

Messages are delivered at most once
Same assumption above, that all messages are either distinct or numbered distinctly.
To prove:
 No two distinct read actions in an execution contain the same data value (or data id).

Proof
Add an application Writer that writes from a queue, in order, starting at the front and
going to the back, and an application Reader that reads from the SlidingWindowReceiver
and puts the data read in a buffer, in the order it was received.

State invariant
One state invariant suffices to prove both safety properties:

If the Writer queue equals {d1, d2, d3, ... }, then in every state of every execution of
the composition of Reader, Writer, SlidingWindowSender, SlidingWindowReceiver,
and UnreliableChannel, the following conditions hold:
1) the Reader buffer is a prefix of the Writer buffer, i.e., the Reader buffer is

{ d1, d2, d3, ... , dn} for some n.
2) SlidingWindowSender.LastFrameWritten is equal to j in the last previous action of

the form write(dj) (or to 0 if there has been no write); and
3) For each write(di) appearing prior to any state sk in the execution, the sequence

number associated with di is sequence number i in all buffers in sk, i.e.,
sk.SlidingWindowSender.sendBuf[i] !{ [0,0,0], [di,i,0] } and
sk.SlidingWindowReceiver.receiveBuf[i] !{ [0,0,0], [di,i,0] } and there is no entry [di,
k, 0] ! UnreliableChannel.inTransit with i"k.

4) If Reader.Queue={ d1, d2, d3, ... , dn} then
n=SlidingWindowReceiver.lastFrameRead.

5) If k < SlidingWindowReceiver.lastFrameRead, then read(dk) is an action in the
execution

Discussion:
We use conditions 2 through 5 in the invariant so that we can establish condition 1, which
in effect guarantees that messages are delivered in order and without duplicates.
Note that this doesn’t say anything about whether messages are delivered!! In general, if
no messages are delivered, they can’t be delivered out of order.
Proof by induction on the step of the execution:
Induction base:
In the start state, all buffers and queues except the Writer queue are empty, so the invariant
holds.
Induction hypothesis:
For all executions, at step m (or in every prefix of length m), the above conditions hold in
all states.
Induction step:
Let #m+1 be the (m+1)st action and sm+1 be the (m+1)st state. From the induction hypothesis,
we know that in state sm the Reader buffer was { d1, d2, d3, ... , dn } for some prefix of the
Writer buffer. Let’s consider the possibilities in state sm+1, depending on the action #m:
write(di) – need to show that conditions 2 & 3 still hold:
By the induction hypothesis, we know that SlidingWindowSender.LastFrameWritten is equal
to j in the last write(dj) or to 0 if there is no such write prior to step m.
Case 1. LastFrameWritten=0: Then i is 1, LastFrameWritten is 1, and the sequence number
applied is 1. SlidingWindowSender.sendBuf[1] = [d1, 1, 0].
Case 2. LastFrameWritten>0: Then write(di-1) was the previous write (by our definition of
the Writer) and LastFrameWritten=i-1 (by the induction hypothesis). Thus
SlidingWindowSender.sendBuf[i] = [di, i, 0] and lastFrameWritten = i.
send([dj, j, 0], A, B) – need to show that conditions 2 & 3 still hold:

The state of SlidingWindowSender doesn’t change, so there’s nothing to show. The
message [dj, j, 0] is transferred as is into UnreliableChannel.inTransit.
receive(([dj, j, 0], B, A) – need to show that conditions 3-5 hold:

Either there’s no state change in SlidingWindowReceiver.receiveBuf or the message [dj, j, 0]
is transferred as is into SlidingWindowReceiver.receiveBuf[j].
read(dk):
Nothing happens unless the sequence number in receiveBuf[lastFrameRead] > 0, in which
case, before action read(dk), the induction hypothesis requires the following to hold:

receiveBuf[lastFrameRead] = dlastFrameRead

Reader.queue = { d1, ..., dlastFrameRead }.

The precondition implies that k be lastFrameRead+1, so that Reader.queue becomes { d1, ...,
dlastFrameRead+1 } and lastFrameRead becomes lastFrameRead+1. This proves that 4) and 5)
are still true.

duplicate(dk):

The sequence number associated with the data stays the same, so this does not violate the
induction hypothesis.

drop(dk):

If condition 3 wasn’t violated before, removing a message doesn’t violate it.

